

Current-Insulated FAG Rolling Bearings Prevent Damage due to Passage of Electric Current

Technical Information

A Member of the Schaeffler Group

Current-Insulated Designs

If conditions are unfavourable in electric motors, bearing damage due to passage of electric current can occur. Magnetic asymmetries, which cannot be completely avoided even if production of electric motors is carried out very carefully, causes a voltage difference between rotor and stator. The circuit is closed through the bearings.

Rolling bearings in electric motors that are operated with a frequency converter are particularly jeopardized. High-frequency harmonics generate ripple voltages that can also cause passage of current through the bearing.

Current passage causes damage to the running areas in the form of:

- craters
- beads
- fluting
- discolourations
- microwear,

which in turn lead to premature bearing failures.

Usually, damage due to the passage of current attracts attention through increased running noise. If insulation is provided between bearing shield and housing or between shaft and inner ring, such passage of current can be prevented. Another, very simple, method to interrupt the induced current circuit is to use current-insulated rolling bearings.

In some cases, in motors operated with a converter, it is sufficient to insulate only one bearing.

Types of coating for rolling bearings

- FAG offers coatings (suffix J20..) on bearing outer rings. The coating is applied to the ring outside diameter and to the two ring faces:
- J20B layer thickness < 0.1 mm
- J20AA layer thickness = 0.2 mm

Properties of coated rolling bearings

The layer protecting FAG rolling bearings consists of oxide ceramic. It is applied by plasma spraying and then sealed with synthetic resin.

The disruptive voltage with direct current is:

- 500 V for a J20B coating
- 1 000 V for a J20AA coating

Thanks to a special sealing, bearings with a J2oAA layer can be used even in humid environments. The oxide ceramic layer is very hard. The material is resistant to wear and a good heat conductor.

Dimensions of the coated bearings

The boundary dimensions of FAG current-insulated rolling bearings are in accordance with DIN 616 (ISO 15). They are therefore interchangeable with standard bearings.

Hybrid bearings an alternative

An interesting alternative to coated rolling bearings are hybrid bearings with steel rings and ceramic (silicon nitride) rolling elements. The rolling elements provide the required current insulation. Hybrid bearings are prefixed **HC**.

In addition, hybrid bearings offer the following advantages:

- higher speed
- reduced friction
- lower temperature

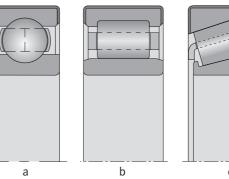
Especially with sealed hybrid bearings, a longer grease life and thus a clearly longer bearing service life can be achieved. For more information refer to

TI WL 43-1210.

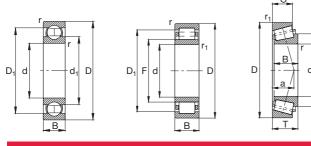
Which bearing design for which applications?

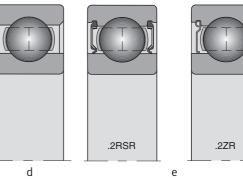
Coated bearings to J20B

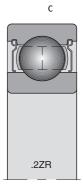
- Thin layer, insensitive to damage caused during mounting lower-priced.
- Less strict requirements on disruptive strength (at least 500 V).


Coated bearings to J20AA

• high resistance to the passage of current (at least 1 000 V), even in a humid environment.


Economic effectiveness


With small rolling bearings, the hybrid designs are more economical. With larger rolling bearings, the coated designs are the more economical choice.


Current-Insulated Designs

Figures a – e show cross sections of current-insulated bearings. (a) coated deep groove ball bearing, (b) cylindrical roller bearing, (c) tapered roller bearing, (d) hybrid deep groove ball bearing (open), (e) hybrid deep groove ball bearing (sealed).

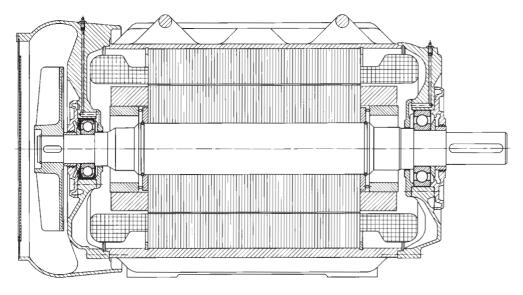
Current-Insulated Design

Shaft	Dimensions								Load rating dyn. stat.		Reference Code speed		Mass ≈
	d mm	D	В		r, min		d₁ ≈	F ≈	c kN			Bearing FAG	kg
											min ⁻¹		
75	75	160	37	2.1		133.2	101.8		114	76.5	7000	6315M.C3.J20AA	3.23
		130	***************	1.5	1.5	114.4		88.5	132	156	5300	NU215E.TVP2.C3.J20AA	1.27
80	80	140	26	2		121.2	98.9		72	53	6300	6216.C3.J20AA	1.46
	80	170	39	2.1		141.8	108.6		122	86.5	6700	6316M.C4.J20AA	3.82
85	85	180	41	3		151.6	114.4		132	96.5	6300	6317M.C3.J20AA	4.33
90	90	160	30	2		139.4	112.7		96.5	72	6000	6218.C3.J20AA	2.21
	90	190	43	3		157.1	123.8		134	102	6000	6318M.C3.J20AA	5.53
	90	160	30	2	2	139.7		107	183	216	4500	NU218E.TVP2.C3.J20AA	2.36
95	95	200	45	3		165	129.1		143	112	5600	6319M.C4.J20AA	6.34
100	100	215	47	3		179	138.6		163	134	5000	6320M.C3.J20AA	7.78
	100	180	34	2.1	2.1	156.9		119	250	305	4000	NU220E.TVP2.C3.J20AA	3.49
110	110	240	50	3		197.4	153.4		190	166	4500	6322M.C3.J20AA	10.5
120	120	260	55	3		214.8	165.1		212	190	4000	6324M.C3.J20AA	13.0
	120	215	40	2.1	2.1	187.8		143.5	335	415	3200	NU224E.TVP2.C3.J20AA	5.8
130	130	280	58	4		231.2	178.9		228	216	3800	6326M.C3.J20AA	18.3

d

Availability of other types and sizes of current-insulated rolling bearings will be indicated on request.

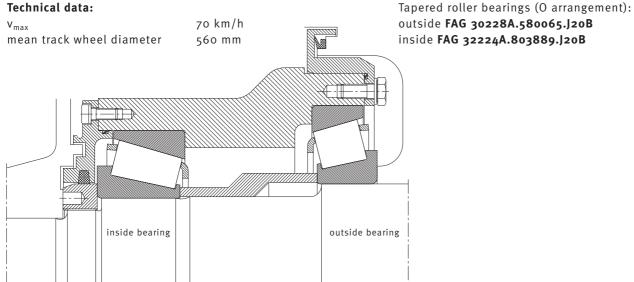
Mounting Examples


1. Three-phase motor

Deep groove ball bearing with a J20AA layer

Technical data:

Three-phase motor, converter-fed Power 375 kW Design four-pole


A current-insulated deep groove ball bearing FAG 6316.C3.J20AA is installed at the ventilation end, and a deep groove ball bearing FAG 6320.C3 is installed at the drive end. Both bearings are lubricated with grease. A relubrication device is provided.

2. Axle box roller bearing

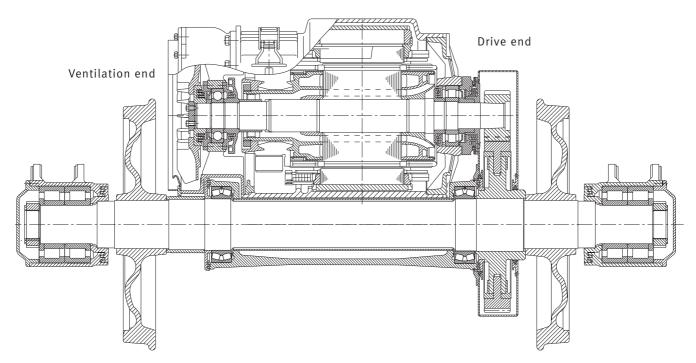
Tapered roller bearings with a J20B layer Idler mounting in Combino low-floor articulated tramcar, one-meter gauge / Freiburg (Germany)

Technical data:

Mounting Examples

3. Traction motor bearing mounting in an electric tramcar

Deep groove ball bearing and cylindrical roller bearing (both with J2oAA coating)


500 kW three-phase motor

A deep groove ball bearing FAG 6318M.C3.J20AA is installed at the ventilation end, and a cylindrical roller bearing FAG NU320E.M1.C4.F1.J20AA is installed at the drive end of the rotor shaft.

Both bearings are lubricated with grease and protected from dirt and environmental influences by labyrinth seals.

A relubrication facility was provided.

Traction motor

FAG Kugelfischer AG

Postfach 1260 D-97419 Schweinfurt Georg-Schäfer-Straße 30 D-97421 Schweinfurt Phone: +49 9721 913525 Fax: +49 9721 913832 E-mail: electromachinery@fag.de www.fag.com Every care has been taken to ensure the correctness of the information contained in this publication but no liability can be accepted for any errors or omissions. We reserve the right to make changes in the interest of technical progress. © by FAG 2004.

This publication or parts thereof may not be reproduced without our permission.